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Introduction. The purpose of this vignette is to share how the investigation of canoni-
cal matrix forms can be used to highlight a rich variety of mathematical theory building
philosophies and techniques at a relatively early stage of the undergraduate mathematics
curriculum. Focusing on the matrix version instead of the equivalent linear transformation
version helps make this topic accessible in a second course in linear algebra.

Taking a problem-first approach as opposed to the traditional theory-then-applications
approach allows the students to see theory as arising naturally out of the study of problems.
Furthermore, carrying the study of a single problem over an entire unit (perhaps three to
four weeks in duration) helps students appreciate the process of mathematical investigation
as a sustained, multifaceted endeavour, as compared to the solve-this-homework-problem-
then-on-to-the-next-one nature of the typical activities assigned in lower level undergraduate
mathematics courses.

The exposition of canonical forms given in the Outline section below is in no way novel.
But what I believe is of interest is the variety of problem-solving philosophies and heuristics
that can be exposed through this topic, as well as the pedagogical choice to bring these to
the fore while allowing examples and discovery to lead to development of theory.

The problem. For a given n, the similarity relation is an equivalence relation on the set of
n×n matrices over C. What is the “simplest” representative member of any given similarity
class? And what should “simplest” even mean?

The process. In carrying out a step-by-step investigation to attempt to provide an answer
to this problem, students discover that the answer can take on many forms. Along the
way, they are exposed to many common mathematical problem-solving and theory-building
philosophies and techniques, such as

• initial consideration of special cases before tackling the full problem,
• generalizations of previous results,
• attempting to apply old methods to new situations and adapting as necessary,
• decomposing an object to analyze it by pieces,
• special analysis of “cusp” cases, on the boundary between two types of behaviour,
• using indirect methods of gathering information, and
• collecting results into a general theory encompassing all cases,

all in one self-contained unit.

Motivation. Augustana Campus is a small, liberal arts, residential, undergraduate-focused
teaching campus of the University of Alberta, located in rural Camrose, Alberta, approxi-
mately 100 kilometres southeast of the main campus (Edmonton). Due to the size of the
campus (approximately one thousand students), Augustana offers a combined Mathematics
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and Physics (MAP) program, rather than standalone programs in each of these two disci-
plines. As well, attracted to the liberal arts model, Augustana students bring a diversity
of interests to their studies. One way in which this diversity manifests itself is in the many
combinations of major and minor programs of study an instructor can encounter in his or
her class list. It is common to have a number of history or music or psychology or biol-
ogy or drama majors enrolled in second- and third-year mathematics courses as part of a
mathematics minor.

For these two reasons — the applied mathematical slant to the MAP program and the
diversity of student interests — a dry, rigorous, theory-first approach to linear algebra is not
suitable. Even more so since only an extremely small number of our students will go on to
pursue graduate studies in mathematics.

On the other hand, the structure of the MAP program at Augustana is such that the
courses Linear Algebra II and Introduction to Group Theory (both at the second-year level)
represent the end-of-the-road for the study of abstract algebra at Augustana Campus, aside
from the possibility of an individual directed reading course. This is true for MAP majors and
mathematics minors alike. It is mainly for this reason that I initially chose to develop a unit
on canonical matrix forms for Linear Algebra II, as I felt this topic to a be a particularly rich
one, offering an invitation to many beautiful and abstract, though surprisingly accessible,
concepts in linear algebra. However, my first attempt at delivering this topic did not go
well. [See: the Student experience section below.] After reflecting upon this initial failure
and choosing not to give up on the topic, I decided to try a more problem-centred approach.
As I reworked the course material, I discovered the wonderful opportunity that this topic
allows to bring problem solving philosophies and heuristics to the fore, where examples lead
to theory. I believe that this approach is ultimately more valuable to the education of my
students.

Inspiration. Some of the inspiration for developing this approach came from experiences
in teaching two other courses.

Topics in Geometry. This is a course on axiomatic geometry at the second-year level. Being
not particularly well-versed in the subject, when I was first assigned to teach this course in
the fall of 2009 I dutifully followed the presentation in the book I had chosen: a coil-bound
set of course notes developed by colleagues at another institution. These notes were a rather
dry compendium of axiomatic Euclidean geometry. Likely a more experienced instructor
could make this material come alive in class, but I could not — part-way through the course
I realized that I was even boring myself! With another crack at the course in the winter of
2012, I chose a different textbook, and was determined to find a way to make the material
compelling. The manner in which the material was developed in the new book provided the
means to achieve this. Neutral geometry was first developed as thoroughly as possible, and
then the real fun started: Euclidean and non-Euclidean geometry were developed somewhat
in parallel, with the relatively staid and intuitive Euclidean geometry acting as a foil for all
the weird and wonderful aspects of non-Euclidean geometry.

Real Analysis. On two occasions I have supervised a directed reading course consisting of
a basic introduction to real analysis at the third year level, a subject that does not appear
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in the Augustana course calendar. I was very much inspired in my own teaching by the
presentation of the material in the book that I settled upon for this course. To motivate the
development of theory and to justify the level of care and rigour taken in this development,
the author opened each topic with an interesting, counter-intuitive example, the investigation
of which would require new tools and techniques. Then the author ended each topic with a
historical vignette on the original development of the theory, often highlighting the pitfalls
of being too lax with rigour.

Both of these experiences inspired me to try to find more compelling and enticing presen-
tations of the material in all my courses. The current vignette describes the result of an
attempt to do this for one topic in linear algebra.

Student experience. In the winter term of 2011 I delivered the topic of canonical matrix
forms to my Linear Algebra II students in the traditional fashion, dutifully running through
all the prerequisite theory before getting to the actual topic itself. Aside from a handful of
particularly strong students, the majority were lost, adrift in a sea of abstract facts that had
no connection to anything of any relevance to them.

In the winter term of 2013 I changed tactics completely, delivering the topic in the manner
outlined below, with very different results. Having a central motivating problem underlying
the entire topic and returning to the central theme of similarity at the beginning of each
subtopic kept the students engaged and focused. Another factor that contributed to the
students’ ability to engage the material was giving myself permission to drop generality in
the theory as a goal, as this is not a goal that is shared by a typical second-year student. In
organizing the material around a central motivating problem, I was able to streamline the
theory to the purpose of attacking the problem, in the process making it more accessible to
the students.

Here are two comments extracted from the end-of-term course evaluations.

The supplementary notes are great. . . I found I learned those sections the best.

— Anonymous student evaluation comment, AUMAT 220 Linear Algebra II, Winter 2013.

I learned to think beyond the question. If that makes sense. . .

— Anonymous student evaluation comment, AUMAT 220 Linear Algebra II, Winter 2013.

Outline. Here I will provide a brief outline of the subtopics of a unit on canonical matrix
forms, as delivered in Linear Algebra II at Augustana Campus in the winter term of 2013.

Topic. Diagonalizable matrices.
Philosophy. Start with a simple case.

Students will suggest the zero matrix and the identity matrix as the simplest matrices they
know, but the similarity classes of these particular two examples don’t take very long to
investigate! Soon the students will suggest diagonal matrices, the analysis of which leads
to the theory eigenvalues and eigenvectors. The students have likely seen these concepts in
Linear Algebra I but they are worth reviewing anew.

Topic. Similarity revisited.
Philosophy. Find the essence of what made the analysis of the simple case work.
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While eigenvalues and eigenvectors are important in further cases, it is not readily apparent
exactly how they will be of practical use. At this initial stage, the most important part of the
analysis of the diagonal case is the algebra that led to the consideration of eigenvalues and
eigenvectors. Repeating this analysis for general pairs of similar matrices, by rearranging
P−1AP = B to AP = PB and taking the linear combination point of view of matrix
multiplication, we find that A and B are similar via P if and only if the columns of B
encode the action of A on the basis of Cn formed by the columns of P . By encode the action,
I mean that the coordinate vector of Apj with respect to the basis {p1, . . . ,pn} is precisely
the jth column of B, where pj is the jth column of P .

Topic. Block diagonal form.
Philosophy. Generalize.

This form can be approached through geometric examples, as well as through the prototypical
example of eigenspaces.

B =

[
3 1
1 1

2 1
1 2

]
A =

[
6 4 −1 −3
7 10 −2 −6
0 6 0 −3

14 12 −3 −8

]
P =

[
1 1 1 1
1 2 1 1
0 0 1 −2
2 4 2 3

]
Example 1. How is it that P−1AP = B?

We can use the view of similarity from the preceding topic to answer the question posed
in Example 1: the crux of the similarity of A and B is that Ap1 and Ap2 lie in Span{p1,p2},
while Ap3 and Ap4 lie in Span{p3,p4}. Thus, we are led to theory of invariant subspaces
and collections of independent subspaces.

Here is an example of attempting to streamline the theory to the problem at hand. At this
level and in this context, the concept of direct sum is needlessly abstract. The equivalent
concept of collections of independent subspaces can be used instead, and is accessible to the
students as a generalization of the concept of independent vectors.

Topic. Scalar-triangular form.
Philosophy. Try an incrementally more difficult case.

Students will likely propose (or at least agree) that a triangular form is the natural next step
after diagonal. As an incremental step, consider triangular matrices with a single eigenvalue,
which I call scalar-triangular form.

T =
[
3 1 2
0 3 −1
0 0 3

]
A =

[ −2 −14 5
1 6 −1

−2 −5 5

]
P =

[
1 −2 1
0 1 −1
1 1 −1

]
Example 2. How is it that P−1AP = T?

Again, using the view of similarity developed previously, we can see in Example 2 that
p1 must be an eigenvector of A, with eigenvalue λ = 3. However, p2 is less cooperative.
It would be an eigenvector of A for λ = 3, except for the fact that Ap2 has a nonzero p1

component. With a little algebra we see that although p2 does not satisfy the homogeneous
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linear system (λI −A)x = 0, it does satisfy (λI −A)2x = 0. And similarly, we find that p3

satisfies (λI−A)3x = 0. Thus, we are led naturally to the theory of generalized eigenvectors.

Topic. Triangular-block form.
Philosophy. Boldly forge ahead using whatever tools worked before.

What can be done when A has more than one eigenvalue? Generalized eigenvectors helped
us out in the previous case, so why not throw them at this problem and see what comes of it.
Carrying this out in examples, we quickly find that generalized eigenspaces are independent
and invariant, and so we can put any matrix (over C) into a block diagonal form, where each
block is in scalar-triangular form. I call this triangular-block form.

Topic. Nilpotent matrices.
Philosophy. Break the problem apart.

We have a triangular form that can be achieved for any matrix. But can this form be
“simplified” any further? We don’t want to mess up the blocks we already have. However,
it is not clear how to choose a basis for each generalized eigenspace to further “simplify”
the individual blocks. The scalar part of each block in triangular-block form is as simple
as it gets, so it is natural to consider just the messy upper triangular part. To get at the
upper triangular part, we break a given block into a sum λI + N , and so are naturally led
to consider the special case of nilpotent matrices.

Topic. Elementary nilpotent form.
Philosophy. Analyze the “cusp” case.

Nilpotent matrices are not all created equal — they can be graded by their degree of nilpo-
tency, the smallest positive integer so that Nk = 0. The maximum degree of nilpotency
an n × n matrix can have is n, while the zero matrix is the unique matrix with minimum
degree of nilpotency of 1. Thus, amongst nilpotent matrices, those with maximum degree of
nilpotency could be considered to be furthest from the zero matrix, and on the cusp between
nilpotency and non-nilpotency. For this reason, they are a natural first case of nilpotent
matrix to consider. It turns out that all such matrices are similar, and that this similarity
class contains a matrix with a particularly simple triangular form that I call elementary
nilpotent form. An example of this form is the matrix N below. (Here we switch to a lower
triangular form to make things work out more cleanly.)

N =

[
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

]
A =

[
1 2 0 −1
3 7 −1 −4

−1 9 −2 −4
6 10 −1 −6

]
P =

[
1 1 1 1
1 2 1 1
0 0 1 −2
2 4 2 3

]
Example 3. How is it that P−1AP = N?

Once again applying our view of similarity, we see that the answer to the question in
Example 3 is that the columns of P satisfy pj = Aj−1p1, and so we are led to the theory of
cyclic subspaces.

Topic. Triangular-block form for nilpotent matrices.
Philosophy. Gather information indirectly.
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Rather than dive headlong into the theory of cyclic decomposition, I prefer an indirect ap-
proach from this point on. Students should have no trouble believing that general nilpotent
matrices can be put into a block form where each block is in elementary triangular form.
If we insist that the blocks appear in order of decreasing size (or increasing, if you like),
then any such matrix is completely determined by the number of blocks of each size, and a
more detective-like approach can be taken: given a nilpotent matrix A, can we determine
the corresponding block form matrix N without computing a corresponding P matrix?

Each block of N has rank one less than full, and taking increasing powers of N decreases
these block ranks by one for each step increase in the exponent. Furthermore, the rank of a
given block will first vanish in the power of N corresponding to the size of the block. These
are all properties easily seen in examples of the form matrix.

From these observations, and since corresponding powers of N and A have the same rank,
we can completely determine N by considering the sequence rankA, rankA2, . . . , rankAk−1,
where k is the degree of nilpotency of A.

Topic. Jordan canonical form.
Philosophy. Develop a general theory encompassing all cases.

Finally, applying the results of the nilpotent case to the nilpotent part of each block in
triangular-block form, we arrive at the Jordan canonical form. And similar to the general
nilpotent case, we can use indirect methods to determine the Jordan form of a matrix
A without having to calculate a corresponding P matrix, by accumulating the following
information: the eigenvalues of A and their multiplicities, and the ranks of the powers of the
matrices A− λjI for each eigenvalue λj.

Conclusion. I believe that one of the most valuable contributions that we as educators
can make to our students’ intellectual growth is to provide opportunities to engage in many
different modes of thought, investigation, and problem solving, including reflection on the
processes of problem solving and theory building themselves. A unit on canonical matrix
forms affords such an opportunity, and I am eager to engage with the mathematical education
community to discover other topics in undergraduate mathematics that may do the same.

Note. This vignette is based on an article accepted for publication in Problems, Resources,
and Issues in Mathematics Undergraduate Studies (PRIMUS), titled “A Problem-Centred
Approach To Canonical Matrix Forms.” In particular, all the examples in this vignette are
taken from this article.

The article is available to subscribing institutions at the following address.
http://www.tandfonline.com/doi/full/10.1080/10511970.2013.865691


